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Abstract  The reaction profile (energy profile) is a widely used conceptual tool in chemical kinetics to represent 
the progress of a chemical reaction. Quantitatively, a reaction profile can be viewed as a minimum energy path 
(MEP) on the potential energy surface (PES), which connects the reactants and products through one or more 
transition states or intermediates. In this article, we used Mathematica program to demonstrate a generic method for 
finding reaction profile on a Müller-Brown PES by applying steepest descent algorithm. The properties of the MEP 
and stationary points were discussed in detail. The general characteristics of the transition state (TS), and imaginary 
mode were illustrated with a vibrational analysis of hydrogen exchange reaction, H2+H → H+H2. 
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1. Introduction 

To accurately describe a reaction or its mechanism,  
an in-depth knowledge of PES of the system is very 
necessary. The PES gives us the energy of the system at a 
particular geometry or configuration, and other important 
derived quantities such as force (first derivative of energy 
with respect to the position, ∂E/∂r) or force constants 
(∂2E/∂r2) etc. In PES, the energy of the system (generally, 
the total energy), is represented as a function of a 
coordinate, (usually known as a reaction coordinate). For 
example one can find out the mechanism of a reaction (i.e. 
how and where the bond breaking and formation occur) by 
using molecular dynamics simulation in conjunction with 
the PES of the system. However, the construction of 
precise and detailed potential energy surfaces for a 
number of chemical reactions is not yet feasible. For 
example, consider a hydrogen exchange reaction. The PES 
of this reaction is well described in many standard text 
books in physical chemistry, and this PES is usually 
created by using hundreds of single-point ab initio 
calculations. The Figure 1, shows PES as a contour 
diagram of two independent variable Rab and Rbc, and it 
runs between [0.0 - 3.0] Å. Here, a medium accurate step 

size of 0.10 Å was used, and we performed 900 (or 302) 
single-point calculations to construct this PES (the curves 
in the figure can be drawn, for example, by using cublic-
spline method). 

 
Figure 1. PES of the hydrogen exchange reaction obtained from a set of 
ab initio calculations; the asterisk indicates the TS and unit of bond 
length is in Å 
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And note that the H2+H system is a simple system, and 
if we consider, say, H2O+H reaction, (a bit more advanced 
system with twelve Cartesian degrees of freedom, DOF) 
the number of single point calculations to represent the 
PES in the Cartesian coordinate system with a step size of 
0.10 Å would be 10012, if we use a [0.0-10.0 Å] scale for 
each DOF. This example shows that one cannot obtain a 
complete PES of the system if the DOF is even twelve. 
However, there are other methods - which explore the 
chemically relevant portion of the PES [1,2] exploring the 
evolution of the reactants to the products through the TS 
or intermediates along a least-action path. Applications  
of one of such schemes (known as intrinsic reaction 
coordinate (IRC)) [1] using standard ab initio packages to 
some interesting reactions have been discussed erstwhile 
[3,4,5,6,7]. Note that IRC is just an another MEP,  
but defined in mass weighted coordinate system (See 
Appendix 1 in the supplementary information). For its 
applications in computational chemistry, refer Jensen’s 
text book [9]. 

In this article, we discuss 'minimum energy path' (MEP) 
algorithm [2] in detail, since it represents a unique least-
action path from the reactants to the products through  
the saddle points. Mathematically, MEP is defined  
as a steepest descent (SD) [8] path from the transition state 
(or a saddle point) towards a stationary point (equivalent 
to product, reactants or intermediates state since these 
points mathematically correspond to local or global 
minima on a surface). This SD can also be regarded as the 
energetically favorable (least-action) path between two 
minima. 

Here, we demonstrate a generic MEP algorithm using a 
test (Müller-Brown) potential energy surface using 
Mathematica 10 program. Since we used only basic as 
well as common commands, one can also use equivalent 
computer algebra system such as Matlab, Maple,  
GNU-Octave etc. for doing this exercise by simply 
translating these commands. For brevity, we didn’t 
consider molecular dynamics calculations using this  
PES and we strongly suggest the reader to refer 
Sathyamurthy’s paper [10] for an introduction of MD 
using PES and other primitive concepts in the reaction 
dynamics. 

The main steps in this exercise are following:  
(1) Construction of the PES, (2) Identifying stationary 
points (initial, intermediates, and final states) and transition 
states (TSs) etc., (3) Finding the imaginary mode at TS  
(4) Performing the MEP algorithm from TSs to obtain a 
complete reaction profile with an appropriate reaction 
coordinate. The stationary points and transition states were 
obtained by analytical differentiation. The ‘imaginary 
mode’ has been created by diagonalizing the force 
constant matrix (i.e. Hessian matrix) at the transition states. 
Forward and backward SD paths were calculated from the 
transition states to obtain the complete minimum energy 
path - which starts from the initial reactant location to  
the location of the final product via the saddle points and 
an intermediate state. Appendices are given finally, to 
discuss the properties of the Hessian matrix (Appendix 2 
in the S.I.). Note that, a reader can download more 
detailed Mathematica 10 notebook or its PDF version 
from the links as shown in the supplementary information 
section. 

2. Computational Procedures 

1) Construction of the PES 
Here we define MB-PES and its parameters (See Table 1). 

This PES is a well known test system used in Physical 
Chemistry for testing various numerical algorithms. The 
function, E(x,y), is stored in MBpes[x,y] variable and its 
plot is shown in the Figure 2. The closed (i.e. analytical)  
form of the MB-potential is also calculated. It should be 
noted that the MB-PES has two transition states and one 
intermediate state between the initial and final states (See 
below). 

Table 1. Construction of the MB-PES 

 
A0 = {-200.00, -100.00, -170.00, 15.00};  
A = {-1.00, -1.00, -6.50, 0.70};  
B = {0.00, 0.00, 11.00, 0.60};  
C0 = {-10.00, -10.00, -6.50, 0.70}; 
x0 = {1.00, 0.00, -0.50, -1.00};  
y0 = {0.00, 0.50, 1.50, 1.00}; 
 
MBpes[x_, y_]:=Sum[ A0[[term]] Exp[ A[[term]] (x - x0[[term]])^2 +  
B[[term]] (x - x0[[term]]) (y - y0[[term]]) + C0[[term]] (y - 
y0[[term]])^2 ], {term, 1, 4} ] 
 
MBsurf=ContourPlot[MBpes[x,y],{x,-1.5,1},{y,-0.2,2},Axes-
>False,Frame->True, 
ContourShading->False,Contours->70] 
 
Plot3D[MBpes[x,y],{x, -1.5, 1}, {y,-0.2, 2},MeshFunctions-
>{#3&},Mesh->50,AxesLabel->{x,y}, ColorFunction->“Rainbow”] 
 

 

Figure 2. The above figure shows the TSs, intermediate (I), and 
stationary points (initial, SI and final, SF) on the generated MB-PES 

2) Identifying Stationary Points 
Now, we are about to explore the PES in detail. 

Arbitrarily, we can define that our initial state structure is 
approximately located at (-0.56x, 1.44y) and that of the 
product state structure is placed at (0.62x,0.02y). See the 
contour diagram in Figure 3 for the details. Similarly, one 
can easily locate two TSs and one intermediate state on 
the PES and these are located around the points at (-0.82x, 
0.62y), (0.21x, 0.29y), and (-0.00x, 0.46y), respectively. 
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In order to calculate the MEP, we should find the exact 
figures of these points. Clearly, at these points we can 
write a simultaneous equation, viz., 

 [ ] [ ], /  , /  0.MBpes x y x MBpes x y y∂ ∂ = ∂ ∂ =  

By applying the FindRoot function to these  
equations and from the approximate locations, we  
can calculate the exact numerical values of these  
points (the solutions are stored into some variables for 
later use, such as, xt, xbt, etc.). The exact position of 
TSs, initial, intermediate and final states are given in the 
Table 2. 

Table 2. Finding the exact positions of the TS and stationary points 

(* Position of First Transition structure (TS1) *) 

dfx[x_,y_]=D[MBpes[x,y],x]; (*Analytical derivative 
[ ]MBpes ,x y

x

∂

∂
*) 

dfy[x_,y_]=D[MBpes[x,y],y]; (*Analytical derivative:
[ ]MBpes ,x y

x

∂

∂
*) 

 
FindRoot[{ dfx[x,y]==0,dfy[x,y]==0},{{x,-0.8},{y,0.6}}] 
(* The solution, where the above derivatives of MBpes[x,y] = 0.0 *) 
xt=-0.8220015587327321; yt = 0.6243128028148713; (* Exact Solution 
is saved in xt, yt *) 
 
(* Position of Second Transition structure (TS2) *) 
FindRoot[{ dfx[x,y]==0,dfy[x,y]==0},{{x,0.21},{y,0.21}}] 
xbt = 0.212486582000662; ybt = 0.292988325107367; (*Exact Solution 
is saved in xbt, ybt *) 
 
(* Position of Initial structure (Initial) *) 
FindRoot[{ dfx[x,y]==0,dfy[x,y]==0},{{x,-0.6},{y,1.4}}] 
xi=-0.5582236346330243; yi = 1.4417258418046686;  
(* Exact Solution is saved in xi, yi *) 
 
(* Position of Intermediate structure (Intermediate) *) 
FindRoot[{ dfx[x,y]==0,dfy[x,y]==0},{{x,0.0},{y,0.5}}] 
xf=-0.05001082299820604; yf = 0.4666941048719721;  
(*Exact Solution is saved in xf, yf *) 
 
(* Position of product Structure (Final) *) 
FindRoot[{ dfx[x,y]==0,dfy[x,y]==0},{{x,0.6},{y,0.0}}] 
xbf=0.6234994049308766; ybf = 0.028037758528685654;  
(*Exact Solution is saved in xbf, ybf *) 
 
(* To generate contour diagram of the PES with the above points*) 
ContourPlot[MBpes[x,y],{x,-1.5,1},{y,-0.2,2},Axes->False, 
Frame->True,ContourShading->False,Contours->40, 
Epilog->{Blue,Disk[{-0.558,1.44},0.04] , 
Red,Disk[{-0.822,0.624},0.03],Cyan,Disk[{-0.05,0.47},.03], 
Red,Disk[{ 0.213,0.293},0.03],Green,Disk[{0.623,0.028 },.04]}] 

 
All of these points can be now represented over the 

MB-PES contour diagram (See Figure 3). 

3) Finding the Imaginary Modes at TSs 
To find the direction of descent from the TS to initiate 

the SD procedure, we need to find a starting vector  
and it is usually known as the transition vector or TV 
(also known as the imaginary mode, since it corresponds 
to a negative eigenvalue (See Appendix-2 for more 
details). This vector is obtained by diagonalizing  
the numerical Hessian matrix at the TS. For example,  
at TS1, the numerical Hessian matrix can be evaluated  
and its eigenvalues and eigenvectors are given in  
Table 3. 

 

Table 3. Imaginary mode of TS1 

Clear[x,y, i, j]; 
DynamicalMx = D[MBpes[x,y],{{x ,y},2}]; 
DynamicalMx /.{{x->xt,y->yt}}; 
MatrixForm[%]  
Eigensystem[%] 

 
The above 2×2 matrix gives a single negative eigenvalue 

(or strictly, an imaginary frequency proportional to square 
root of -750.863) and that gives an imaginary mode, or 
eigenvector of [-0.761396 x + 0.648287 y]. Note that  
-1*[-0.761396 x +0.648287 y], is also an eigenvector of 
the Hessian matrix (and hence another TV). The above 
procedure of diagnolization can be applied to the second-
Transition structure (ie. at (xbt, ybt)) and will give TVs at 
this point, viz., ±1*[-0.500306 x + 0.865849 y]. Table 4 
contains the required the commands. 

Table 4. Imaginary mode of TS2 

Clear[x,y, i, j]; 
DynamicalMx = D[MBpes[x,y],{{x ,y},2}]; 
DynamicalMx /.{{x->xbt,y->ybt}}; 
MatrixForm[%]  
Eigensystem[%] 
 
CounterMB:=ContourPlot[MBpes[x,y],{x,-1.5,1},{y,-0.2,2},Axes-
>False,Frame->True, 
ContourShading->False,Contours->40,Epilog->{Blue,Disk[{-
0.558,1.44},.02] ,  
Red,Disk[{-0.822,0.624},.02],Cyan,Disk[{-
0.05,0.47},.02],Red,Disk[{ 0.213,0.293},0.02], 
Green,Disk[{0.623,0.028 },.02]}]; 
 
(* 0.11 is used for scaling in the below commands*) 
Aarow1={Arrowheads[Medium],Arrow[{{xt,yt},{xt-
0.761*0.11,yt+0.648*0.11}}]} ; 
Aarow2={Arrowheads[Medium],Arrow[{{xt,yt},{xt+0.761*0.11,yt-
0.648*0.11}}]}; 
Barow1={Arrowheads[Medium],Arrow[{{xbt,ybt},{xbt-
0.500*0.11,ybt+0.866*0.11}}]} ; 
Barow2={Arrowheads[Medium],Arrow[{{xbt,ybt},{xbt+0.500*0.11,ybt
-0.866*0.11}}]}; 
TSvector=Graphics[{Red,Aarow1,Aarow2,Barow1,Barow2}]; 
 
Show[CounterMB,TSvector] 

 
The resultant TV vectors at the TSs are shown below. 

 
Figure 3. MB-PES contour diagram (Blue, Cyan, Red and Green dots 
represents, the initial, intermediate, TSs and final points of the reaction, 
respectively) with transition vectors at TS1 and TS2 (red arrows) 
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3. Running the MEP Algorithm from TS 

The general equation for the steepest descent (SD) 
algorithm [3] is given as, 

 ( )1 .i i iR R h+ = − ∇ R  

Here, Ri stands for a given position on SD path after a 
discrete SD step of i, ∇(Ri) is the gradient of the Ri and h 
is the step length (usually a very small number). Note that 
'gradient of the Ri ' in our context is the force at Ri (i.e. 
∂E/∂R). Starting from the transition vector and the TS 
geometry, one can trace the SD path towards adjacent 
minima. The TV is used only once (i.e. for the first step or 
when i =1). The rest of the SD steps use the gradient as 
shown in the above equation. Here we use the SD method 
to find the MEP towards the reactant. The result of the path is 
then stored in Pxb and Pyb arrays. For the sake of 
simplicity, we only demonstrate MEP from TS1 to the initial 
state and to the intermediate state (See Table 5 and Figure 4). 
And by extending these commands (which include the 
transition vector information at TS2), one can obtain the 
complete MEP of the reaction. See the Mathematica 
Notebook from the supplementary information for more details. 

Table 5. MEP algorithm demonstration from the TS1 to reactant 
and to the intermediate 

step=0.0001; 
Backwardwalks = 1;  
 
Pxb[1] = -0.7613963557703369*step+xt; (* moving away from the x 
position of the Saddle *) 
Pyb[1] = +0.6482866568267857*step+yt; (* moving away from the y 
position of the Saddle *) 
 
For[i=2,i<1000, 
{ Pxb[i]=Pxb[i-1]-dfx[Pxb[i-1],Pyb[i-1]]*step; (*the SD equation *) 
 Pyb[i]=Pyb[i-1]-dfy[Pxb[i-1],Pyb[i-1]]*step; 
 i++; 
 If[ Abs[dfx[Pxb[i-1],Pyb[i-1]]] <= 0.00001 && Abs[dfy[Pxb[i-1],Pyb[i-
1]]] <= 0.00001, Break[] ]; (* a STOP condition*) 
} 
] 
Backwardwalks=i 
 
mepBackward:=Table[{Pxb[walks],Pyb[walks]},{walks,Backwardwalks
-1}] (* saving the SD data*) 
MEPtoLeft = 
Show[CounterMB,Graphics[ {Dashed,Line[mepBackward]}]] 
 
Forwardwalks = 1;  
Pxf[1] = +0.7613963557703369*step+xt; (* here, -1.*TS is used *) 
Pyf[1] = -0.6482866568267857*step+yt; (* here, -1.*TS is used *) 
 
 
For[i=2,i<1000, 
{ Pxf[i]=Pxf[i-1]-dfx[Pxf[i-1],Pyf[i-1]]*step; 
 Pyf[i]=Pyf[i-1]-dfy[Pxf[i-1],Pyf[i-1]]*step; 
 i++; 
 If[ Abs[dfx[Pxf[i-1],Pyf[i-1]]] <= 0.00001 && Abs[dfy[Pxf[i-1],Pyf[i-
1]]] <= 0.00001, Break[] ]; 
} 
] 
Forwardwalks=i 
 
mepForward:=Table[{Pxf[walks],Pyf[walks]},{walks,Forwardwalks-1}] 
(* saving the SD data*) 
MEPtoRight=Show[CounterMB,Graphics[ {Dashed,Line[mepForward]}
]] 
 
Show[CounterMB,Graphics[ {Dashed,Line[mepBackward]}],Graphics[ 
{Dashed,Line[mepForward]}]] 

 

Figure 4. MEP from the TS1 to the reactant (first figure) and to the 
intermediate (second figure). The overall figure is shown in the third 
figure. The last figure is the complete MEP from the initial state to the 
final state 
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4. Results and Discussions 

To get a meaningful MEP one should use an appropriate 
reaction coordinate - which represents the progress of  
the reaction. Since our PES is a function of Cartesian 
coordinates, an arbitrary function, f(x,y) can be used as a 
reaction coordinate and for simplicity, we chose a reaction 
coordinate that originates at the TS and is given by, 

 1
1

,
n

i i i
i

r r r−
=

= − ∆∑  

where ri is the [x, y] coordinate of the MEP after the  
i'th SD step, and Δri is the Cartesian distance vector 
(Euclidian norm) from the two consecutive points on the 
path. This ri is just the distance traveled along the MEP 
from the reference position to a particular point on the 
path. 

By choosing TS1 as a reference point, we can divide 
the reaction profile into two parts; (1) MEP towards the 
reactant and (2) towards the product which passes through 
the intermediate and TS2. The following code (See,  
Table 6) calculates the 1-D reaction profile from the TS1 
reference point. 

Table 6. Complete MEP from the TS1 state towards reactant and the 
product positions 

(*MEP towards the reactant *) 
 
Pxb[0]=xt;Pyb[0]=yt;PES[0]=MBpes[xt,yt];RCb[0]=0; 
For[i=1,i<Backwardwalks,{RCb[i]=RCb[i-1]-Sqrt[(Pxb[i]-Pxb[i-
1])^2+(Pyb[i]-Pyb[i-1])^2], 
PES[i]=MBpes[Pxb[i],Pyb[i]],i++}] 
PEStoL = ListPlot[Table[{RCb[n],PES[n]},{n,Backwardwalks-1}]] 
 
(*MEP towards the product *) 
RCdat=Join[mepForward,Reverse[mepBackward2],mepForward2]; 
Totwalks=Forwardwalks+Backwardwalks2+Forwardwalks2-3 
 
RCf[1]=Sqrt[(xt-Pxf[1])^2+(yt-Pyf[1])^2]; 
For[i=2,i<Totwalks-1,{RCf[i]=RCf[i-1]+Sqrt[(RCdat[[i,1]]-
RCdat[[i+1,1]])^2+ 
(RCdat[[i,2]]-RCdat[[i+1,2]])^2], PES[i-1]=MBpes[RCdat[[i-
1,1]],RCdat[[i-1,2]]],i++}] 
 
PEStoR = ListPlot[Table[{RCf[n],PES[n]},{n,Totwalks}],PlotRange-
>All] 
 
Show[PEStoL,PEStoR, PlotRange->Automatic,AxesStyle-
>Thick,AxesOrigin->{-1.25,-160}, 
AxesLabel->{“Reaction coordinate”,”Energy”}] 
 
Show[PEStoL,PEStoR, PlotRange->Automatic,AxesStyle-
>Thick,AxesOrigin->{-1.25,-160}, 
AxesLabel->{“Reaction coordinate”,”Energy”}] 

 
Figure 5. The whole 1D reaction profile calculated from TS1 as a 
function of r(x,y) 

This generic procedure can be used to determine, MEP, 
stationary points and TSs of analytical PES such as  
LEPS [12] or other user generated PES with ab initio 
calculations. This algorithm can also be easily extended to 
higher dimensions by little modification of the scripts.  
The properties of the main locations are summarized in  
Table 7 (note that here r corresponds to the normal mode 
vectors). Finally, we would like to point that (a), for more 
accurate potential barrier one should consider zero point 
energy correction and, independently, the tunneling 
correction [13], and (b), estimation of MEP is widely used 
not only in gas phase molecular systems but also in higher 
dimensional hetero systems, eg. gas adsorption on 
metallic surfaces; See Refs. [14] and [15] for a review of  
some of the well accepted MEP methods that use more 
numerically efficient optimizing algorithms than SD, such 
as quasi-Newton [8] in this context. And in many of these 
methods, MEP calculation is initiated by using only initial 
and final state structures and not with the TS structure (as 
expected, locating TS is rather a difficult process in large 
dimensional systems). We strongly suggest the works of 
W.Quapp (Ref. [16] and references therein) for further 
reading on IRC and MEP and its algorithmics. A student 
can easily apply this analysis to LEPS potential [17] to 
find of the MEP of hydrogen exchange reaction or to 
ammonia inversion system [3]. An insightful, albeit, 
mathematical description of 'least action path' is included 
in the classic book, Feynman lectures on Physics [18]. 

Table 7. Properties of the main locations at the PES 

Initial/Final/Intermediate states Transition state 

Force, 0;E
r

∂
=

∂
 Total force and 

its components will be zero. 

Force, 0;E
r

∂
=

∂
Total force and 

its components will be zero. 

Curvatures, 
2

2 ,E ve
r

∂
= +

∂
 in any 

dimensional PES which gives non-
zero vibrational frequencies 

Curvature, 
2

2
E ve

r
∂

= −
∂

 along 

the MEP. 

5. Discussions of MB-MEP 

MEP gives a general information on the nature of 
reaction and mechanism. For example, concerning the 
calculated energy profile one can easily understand that 
the overall reaction is endothermic. This energy landscape 
gives another valuable information that the reaction 
proceed via forming an intermediate state (in practical 
situation its life span would be a transient or very small). 
Hammond’s postulates can be applied here [11] and it 
indicates the characteristics of the geometries at TSs (for 
example, TS1 geometry will be similar to that of the initial 
structure). Since TS1 looks much more like reactants than 
the final product, it can be considered as an early barrier 
system, so a translation energy (heat) can be used, instead 
of vibrational excitation, to promote the reaction 
(Polanyi’s rule, [12]). 

Moreover, one can easily identify activation energy (or 
barrier, E1), the enthalpy of the reaction (ie. enthalpy of 
formation of the product, E3), and E2 - the activation 
barrier for the formation of the intermediate. They are all 
are represented in the Figure 6. 

1.0 0.5 0.0 0.5 1.0 1.5
Reaction coordinate

140

120

100

80

60

40
Energy

 



129 World Journal of Chemical Education  

 
Figure 6. Reaction profile with some important parameters on this 

Using this energy profile, we can easily find the 
reaction rate constant, k, by using Arrhenius Equation,  
k = A e-E

1
RT (See [12] for more discussions). Here, A is the 

pre-exponential factor, R and T are the universal gas 
constant and temperature in Kelvin, respectively. Note 
that, A, cannot be determined from the minimum energy 
path alone. The most widely used approach to finding A is 
transition state theory, which estimates A on the basis of 
the shapes of the PES in the vicinities of the reactant and 
the transition state for each step. If the PES near the 
transition state is broad and flat, transition state theory 
will give a large A, while if it is narrow and has  
steep walls, the theory will yield a small A. Additionally, 
one can analysis the evolution of geometries (as well as 
with molecular orbitals) of the reactants along this profile 
and it will give an idea of the nature of reaction 
mechanism, in detail. 

The transition vector - the direction of the SD path at 
TS – represents the reaction coordinate which give the 
progress of the reaction. To illustrate this see the below 
figure, which depicts the vibrational modes of the TS of 
the exchange reaction of the H2+H. 

Note that, the TS is a 3 atom, linear molecular system. 
So, there are (3˟3-5) modes are possible (i.e. 4 modes). We 
have used Gaussian STO-3G calculation to find the 
optimized TS and performed vibrational calculations for 
this geometry. And it clearly gives 4 frequencies with one 
imaginary frequency (imaginary frequency is usually 
represented by a negative frequency, ω = -3026cm-1, or 
more correctly 3026i cm-1; since ω=�(𝑘𝑘/𝑚𝑚), where k, and 
m are the force constant and effective mass of the system, 
respectively). Here, the force constant (actually it is a 1˟1 
force constant matrix) for this particular vibration can be 
represented by: 

 
2

2 | ,TS
Ek

r
∂

=
∂

 

and this curvature of the PES obviously represents 
negative parabola (see the first curve in the Figure 7) 
which passes through the TS and it makes the MEP. The 
positions, P1 and P2 of the parabola, will be given by the 
transition vector (TV for P1 and –TV for the P2, for 
example). All the three other parabolas of the other three 
vibrations are the positive parabolas in the PES. Note that 
the TV clearly indicates the direction of the reaction (bond 
dissociation and formation). Furthermore, steepness of the 
parabola represents that magnitude of the vibration, in 
other words, parabola with a greater steepness will results 
stronger vibrations. 

 
Figure 7. Four different vibrational modes of the TS of the hydrogen exchange reaction 

6. Conclusion 

In this Mathematica demonstration we illustrated the 
MEP and its reaction profile by using MB-PES analytical 
PES. Stationary points and TSs were located and from  
the transition vectors at TS1 and TS2, MEP was obtained 
by applying steepest descent algorithm. The MEP 
summarizes information about the reaction mechanism. 
The presence of an intermediate is very clear on the 
reaction profile diagram. Because the potential energy 
described by the MEP is usually the most important 
contributing factor to the internal energy or enthalpy of 
the reacting system, it is a reasonable approximation to 
relate potential energy differences along the MEP to 
changes of energy or enthalpy of the chemical system. 
Reaction coordinate was calculated and it was used to  

plot 1D reaction profile. Finally the transition state 
structure of hydrogen exchange reaction was analyzed and 
the meaning of the imaginary mode was discussed in 
terms of the reaction coordinate. 
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Supplementary Information 

Mathematica (v10) Notebook of this article is available at WJCE web site. 
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