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Abstract  Atoms and molecules with two unpaired electrons can adopt singlet and triplet spin multiplicities. The 
implications of this are far reaching. For instance, the properties of molecular oxygen with its triplet ground state 
cannot be understood if this is not considered. In the design of emitters for OLEDs, the energy gap between singlet 
and triplet excitations is of utmost importance. This energy gap equals twice the exchange energy. Because of this 
relevance, the exchange energy is treated in textbooks and courses on physical and quantum chemistry. The 
treatments are commonly based on the quantum mechanical formalism and leave the students wondering why the 
exchange energy is non-zero. Here, the formalism is briefly re-iterated. Then wavefunctions for singlet and triplet 
states with identical configurations are visualized relying on the well-known particle-in-a-box model. The 
visualization shows that in the triplet state the electrons “automatically” avoid each other. This lowers the triplet 
energy compared to the singlet one. Some short comings of this didactic approach are also discussed.  
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1. Introduction 

Atoms and molecules may possess two unpaired 
electrons. A prominent example for a molecule with two 
unpaired electrons in the electronic ground state is 
molecular oxygen, O2 [1]. Molecules with only paired 
electrons in the ground state undergo unpairing upon 
photo-excitation (Figure 1) [2,3]. The spins of the two 
unpaired electrons may compensate each other so that a 
state with singlet multiplicity results. In the context of 
photo-excitations the respective states are termed S1,2,3,... 
For a parallel alignment of the two electron spins, states 
with triplet multiplicity (T1,2,3…) result. Singlet and triplet 
states of a molecule even with identical orbital 
occupancies differ grossly in their physical and chemical 
properties. For instance, organic matter including 
ourselves persist in air despite the fact that oxygen is a 
very strong oxidant [4]. This kinetic stability can – at least 
partially – be attributed to the fact that the electronic 
ground state of oxygen is of triplet multiplicity [4]. Singlet 
states of oxygen are excited states and may be prepared 
chemically or photochemically [5,6]. With regards to 
organic matter singlet oxygen is much more reactive [7]. 

Singlet and triplet excitations are of paramount 
importance in all areas of photochemistry [2,3] and 
photobiology [7]. Many studies in these fields address the 
question whether an excited singlet or triplet state holds 
responsible for the photoreactivity of a molecule. For 
examples concerning the photoreactivity of DNA bases 
see ref. [8]. The topic is also of current technical interest. 
The emission efficiency of organic light emitting diodes 
(OLEDs) can be enhanced substantially by taking the spin 
multiplicity into account [9,10,11]. The subject, thus, 
deserves an extensive coverage in bachelor and master 
courses on physical and theoretical chemistry.  

A very important physical quantity in this context is the 
exchange energy K. Its value is given by half the energetic 
separation of singlet and triplet states originating from the 
same orbital occupancy (cf. Figure 1) [12]. In molecular 
oxygen the exchange energy K is equal to 0.82 eV (79 
kJ/mol) [1]. S1 and T1 states of many aromatic molecules 
are separated by energies of the same magnitude [3]. 
These separations are in the range of chemical reaction 
energies [13] and, thus, by no means quantités négligeable. 
Physical [13], quantum [14] and photochemistry [2] 
textbooks treat the exchange interaction. Its physical 
origin is commonly explained relying on the pertinent 
equations. In the context of a physical chemistry lecture 
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for a bachelor program (according to the Bologna process 
[15]) we sought for a visual explanation of the exchange 
energy. Such a visualization was reported a few years ago 
using atomic orbitals [16,17]. Here, a visualization based 

on particles-in-a-box wavefunctions is presented. Before 
this visualization and its advantages are presented, a brief 
survey of the theoretical background will be given. 

 

 
Figure 1. Energetic consequence of the exchange interaction illustrated for a molecule with a singlet ground state S0 (left). This state features doubly 
occupied orbitals. The one highest in energy is denoted with ψ1. The unoccupied orbital lowest in energy is denoted ψ2. Excited states are formally 
constructed by promoting one electron from the orbital ψ1 to the orbital ψ2. The excitation can result in a singlet state S1 (center) and a triplet state T1 

(right). The two excited states are energetically separated by twice the exchange energy, 2K. 

2. Two Electron Wavefunctions 

The exchange interaction is relevant for all atoms and 
molecules containing two or more electrons. Only two 
electrons are considered here. The results are also relevant 
for atoms and molecules with more than two electrons 
provided that only two electrons are unpaired. In quantum 
mechanics the properties of these two electrons are 
inscribed in a two electron wavefunction ( ),1 ,2Ψ ;s sr r 

. 

The components of the vectors ,1,2sr
  are the three spatial 

coordinates 1,2 1,2 1,2, ,x y z  as well as the spin coordinates 

1,2σ  of the two electrons. The absolute square of this 

wavefunction, ( ) 2
,1 ,2Ψ ;s sr r  , gives the probability 

density for the two electrons adopting the coordinates 
given by 𝑟𝑟𝑠𝑠,1 and by 𝑟𝑟𝑠𝑠,2. Since we cannot distinguish the 
two electrons, the absolute square must remain constant 
when exchanging the coordinates 

 ( ) ( )2 2
,1 ,2 ,2 ,1Ψ ; Ψ ; .s s s sr r r r=
     (1) 

The importance of this indistinguishability was stressed 
by Erwin Schrödinger: “Man kann Elektronen nicht 
kennzeichnen, nicht ‘rot anstreichen‘ und nicht nur das, 
man darf sie sich nicht einmal gekennzeichnet denken, 
sonst erhält man durch ‘falsche Abzählung‘ auf Schritt 
und Tritt falsche Ergebnisse.” [18] (“One may not label 

electrons, not ‘paint them red‘, and not only that, one may 
not even consider them labeled. Otherwise one obtains 
wrong results at every turn due to ‘wrong accounting’.“, 
translation by the authors). The fact that the absolute 
square needs to be invariant upon exchange leaves two 
possibilities (minus or plus) for the wavefunction itself. 
For electrons which are fermions the minus sign applies: 

 ( ) ( ),1 ,2 ,2 ,1Ψ ; Ψ ; .s s s sr r r r= −
     (2) 

The function is, thus, anti-symmetric with respect to 
exchange. A very important consequence of this minus 
sign is the Pauli exclusion principle which is the 
theoretical basis of the Aufbau principle of the periodic 
system. To arrive at singlet and triplet states we separate 
spatial ( 1,2r ) and spin coordinates ( 1,2σ ): 

 ( ) ( )1 1 2 2 2 2 1 1Ψ , ; , Ψ , ; , .r r r rσ σ σ σ= −
     (3) 

Commonly, the two-electron wavefunction 
( )1 1 2 2Ψ , ; ,r rσ σ 

 is expressed using one-electron functions. 
In the simplest approximation, only two one electron 
functions 𝜓𝜓1,2  for the spatial part and the two spin 
functions 𝛼𝛼  and 𝛽𝛽  enter the expression. These one-
electron wavefunctions are usually termed atomic or 
molecular orbitals. Based on these orbitals one may 
construct two-electron functions which are anti-symmetric 
with respect to exchange. The resulting wavefunctions can 
be classified according to their overall spin S. For S=0 
implying singlet multiplicity (2S+1=1) the wavefunction 
adopts the following form: 
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The factors 1
2

 in front of the brackets ensure 

normalization of the two-electron wavefuntion. It is 
crucial to realize that the spatial part of the wavefunction, 
i.e. the term: 

 ( ) ( ) ( ) ( )( )1 1 2 2 2 1 1 2
1
2

r r r rψ ψ ψ ψ+
      

is symmetric with respect to exchange; there is a plus 
sign in the expression. The spin part 

 ( ) ( ) ( ) ( )( )1 1 2 1 2
2
α β β α−   

is anti-symmetric. Due to the minus sign, exchanging 
the two electrons changes the sign of the spin part. The 
product of a symmetric spatial and an anti-symmetric spin 
part yields an anti-symmetric two-electron wavefunction.  

Two-electron wavefunctions with an overall spin S=1 
describe triplet (2S+1=3) states. In the respective 
wavefunctions:  
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 (5) 

the spatial part is anti-symmetric with respect to 
exchange. There is a minus sign in the first bracket. Three 
different functions are possible for the spin part. This 
accounts for the orientation of the overall spin with 
respect to the quantization axis. All of them are symmetric 
with respect to exchange. So again the product of spatial 
and spin part is anti-symmetric. In comparison to the 
singlet state symmetric and anti-symmetric behavior are 
interchanged. The difference in the spatial part – a plus 
sign for the singlet and a minus sign for the triplet state – 
is responsible for the exchange energy. 

For better understanding the above discussed equations 
(4) and (5) are didactically visualized in Figure 2. 

 
Figure 2. Correspondence between the signs in the singlet and triplet wavefunctions (eq. (4) and (5)) and the symmetry properties of the respective 
diagrams (for a description of these diagrams see Figure 4). The plus sign in the spatial part of the singlet wavefunction corresponds to a symmetric 
behavior of the respective diagram upon rotation around the diagonal. For the triplet state the minus sign corresponds to an anti-symmetric behavior 

3. Simple One Electron Wavefunctions 

To visualize how this seemingly “innocent” sign can 
have such a huge energetic effect we rely on very simple 
one-electron wavefunctions or orbitals most students 
should be familiar with. The wavefunctions are those of a 
particle-in-a-box (PIB). This model is often relied on in 

courses on quantum mechanics. It can illustrate the 
important quantum mechanical finding that bound 
particles have discrete energy levels. It is also popular to 
qualitatively explain trends in quantum systems. For 
instance, in a homologous series of molecules bearing a π-
system, the red-shift of the absorption with conjugation 
length can be explained with the PIB approach (this 
application of the PIB is sometimes referred to as Kuhn 
model [19,20]). Also trends in the optical properties of 
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nanoparticles are rationalized with the PIB model (see e.g. 
ref. [21]). The PIB wavefunctions are also advantageous 
since they are mathematically simple; they are just sine 
functions. These wavefunctions are described by the 
following equation: 

 ( ) 2 sinn
n xx

L L
πψ ⋅ ⋅ =  

 
 (6) 

We hereby restrict ourselves to motions in one 
dimension, i.e. we use one spatial coordinate x  instead of 
the vector r . The quantum number n may adopt the 
values 1, 2, 3, …. For the visualization we use the 
functions with n=1 and n=2. This relates to the orbital 
occupancy of the two excited state, S1 and T1, sketched in 
Figure 1. The width of the box is denoted L, i.e. 0≤x≤L. 
For computations we set this length to 10 Å (conjugation 
length of a typical chromophore), in the plots we will use 
a normalized length, x1.2/L. 

The PIB wavefunctions for n=1 and n=2 are plotted in 
Figure 3 (a Mathcad notebook, used to generate this and 
the following figures, can be found in the Supporting 
Information, SI). The function for n=1 is the lowest in 
energy and has no node. The one with n=2 has one node 

and is higher in energy. The energy of the PIB 
wavefunction is given by: 

 
2 2

28n
e

h nE
m L

=  (7) 

where h is Planck’s constant and me the mass of the 
electron. 

4. Visualization of Two-Electron 
Wavefunctions 

We now have the ingredients for our visualization. The 
two PIB wavefunctions (eq. (6)) are inserted in the 
expression for the two-electron wavefunctions (eq. (4) and 
(5)). Of these wavefunctions we just consider the spatial 
part. As we restrict ourselves to motions in one dimension, 
we only need two spatial coordinates, x1 and x2, one for 
each electron. As the two-electron wavefunctions are real 
values here, simple contour representations can be used to 
visualize these wavefunctions (Figure 4). 

 
Figure 3. Lowest two (n=1,2) PIB wavefunctions (dash-dotted lines) and their absolute squares (solid lines). The wavefunctions and their squares have 
been shifted vertically according to their energy. 
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Figure 4. Contour representation of the spatial part of the two-electron wavefunction considered here (left) and their absolute square (right). The top 
row refers to the singlet state, the lower one to the triplet one. 

Before we turn to the implications of these diagrams, 
we give a brief description on how to read them. The 
diagrams on the left represent the spatial part of the 
functions ΨS  and Ψ .T  To retrieve values for certain 
coordinates, e.g. x1=0.2 L and x2=0.6 L (white crosses in 
the diagrams), one locates these coordinates and reads the 
value using the contour lines. For the singlet state a value 
of 0.79/L is obtained. Note that wavefunctions are related 
to probability densities and are therefore not 
dimensionless. For two electrons and one spatial 
coordinate the dimension of the wavefunction is a 
reciprocal length. Because of the symmetry issue 
discussed above the value at x1=0.6 L and x2=0.2 L (white 
circles) is identical to the one at x1=0.2 L and x2=0.6 L. 
For the triplet state, the same coordinates are looked upon. 
For x1=0.2 L and x2=0.6 L the value is -1,77/L. 
Interchanging the coordinates, i.e. x1=0.6 L and x2=0.2 L 
changes the sign to +1,77/L. This reflects the anti-
symmetric nature of the spatial part of triplet 

wavefunctions. In the same way, values for the absolute 
square can be obtained from the diagrams on right.  

The effect of the exchange is directly visible in these 
diagrams. Exchange of the electrons is nothing else than 
the exchange of the two coordinates or in other words a 
rotation around the diagonal (see Figure 2). The diagrams 
giving the absolute square (Figure 4, right) are symmetric 
with respect to this diagonal, matching the condition given 
by eq. (1). The spatial part of the singlet wavefunction 
ΨS  is symmetric with respect to the reflection in 
accordance to eq. (4). The anti-symmetric nature of the 
spatial part of the triplet wavefunction ΨT  (eq. (5)) also 
shows up in the respective diagram.  

Using these diagrams, we will now rationalize why for 
identical orbital occupancies singlet and triplet states 
differ in their energy. To this end, we inspect the 
diagonals of the diagrams and the regions close to these 
diagonals. Cuts of the diagrams in Figure 4 along the 

 



146 World Journal of Chemical Education  

diagonal are plotted in Figure 5. Along the diagonal the 
two coordinates obey x1=x2, i.e. their spatial separation is 
zero. Slightly above and below the diagonal the separation 
is small. As two electrons experience electrostatic 
repulsion, there is an energetic penalty for sharing the 
same region of space. The singlet wavefunction Ψ𝑆𝑆  and its 
absolute square have non-vanishing values along the 
diagonal. This results in a large – in fact diverging (see 
below) – electrostatic repulsion. The triplet wavefunction 

Ψ𝑇𝑇  and thereby its absolute square is zero all over the 
diagonal and small close to it. So, in the triplet state the 
electrons “automatically” avoid each other. This lowers 
the electrostatic repulsion and explains why triplet states 
are lower in energy in comparison to singlet states with 
the same orbital occupancy. The inverted situation is 
observed for the “anti-diagonal”, x2=L-x1. Here, the values 
for the singlet state vanish and those for the triplet state 
are non-vanishing. 

 
Figure 5. One dimensional cuts along the contour representations plotted in Figure 4. The graphs on the left refer to the diagonal (x1=x2), the ones on 
the right the “anti-diagonal” (x2=L-x1). Dash-dotted lines represent wavefunctions, the solid ones their absolute square 

The diagrams also demonstrate that the nodal properties 
of the orbitals show up in the two-electron wavefunctions. 
The “orbitals” used here are PIB wavefunctions for n=1 
(no node) and n=2 (one node). As consequence one nodal 
line is seen in the diagrams in Figure 3. It is along the 
anti-diagonal for the singlet wavefunction and along the 
diagonal for the triplet one. 

5. Some Expectation Values 

The diagrams in Figures 4 and 5 show clearly that the 
average distance of the two electrons is larger for the 
triplet state compared to the singlet one. We will now 
quantify this difference. This can also be used to 
familiarize students with the methods to retrieve physical 
information from wavefunctions. The average distances of 
the two electrons is the expectation value of |𝑥𝑥1 − 𝑥𝑥2| . 
Expectation values are often symbolized by <…> and can 
be expressed using Dirac’s bra-ket notation or with the 
appropriate integrals: 

 
1 2 , , 1 2 ,

2
, 1 2 1 2

0

Ψ | |Ψ

Ψ

S T S T S T
L

S T

x x x x

x x dx dx

〈 − 〉 = 〈

−

〉−

=∬
 (8) 

The double integral covers the coordinates 𝑥𝑥1  and 𝑥𝑥2 . 
Each integral runs from 0 to the length L of the box.  
Numerical evaluation of the integrals using Mathcad 
yields (see SI) the expectation values for the singlet and 
the triplet states in multiples of box length L (eq. (9)). 

 1 2 0.157Sx x L− = ⋅   

(9) 
 1 2 0.383Tx x L− = ⋅   

The computation confirms the qualitative result of the 
visualization. The average distance for the triplet state is 
larger than the one for singlet state by more than a factor 
of two. As mentioned above, the difference in distance 
results in different electrostatic repulsions which explains  
 
 
 

 



 World Journal of Chemical Education 147 

the exchange interaction. To compute the repulsion one 
does not average over the distance directly, but over its 
reciprocal. The repulsion results from the following 
expectation value: 

 

2
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−
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 (10) 

which contains the reciprocal of the distance. 𝑒𝑒0 
represents the elementary charge and 𝜀𝜀0  the vacuum 
permittivity. For the singlet state the computation diverges, 
i.e. a value of +∞ results. This is the consequence of the 
non-vanishing probability density along the diagonal in 
the respective diagram in Figure 3 (see also Figure 4). 
Along the diagonal the distance between the electrons is 
zero and the reciprocal thus diverges. The respective 
computation for the triplet state yields a finite value, given 
by: 

 
2 2

0 0

0 1 2 0

12.966
4 4

T

e e
x x Lπε πε

= ⋅
−

 (11) 

If we insert a box length L of 10 Å we obtain a 
repulsion energy of 4.273 eV (409 kJ/mol). This repulsion 
energy is much larger than the difference of the two 
“orbitals” energies which here amounts to only 1.128 eV 
(109 kJ/mol).  

So, within our model and the chosen parameters, an 
electrostatic repulsion of +∞ and 4.273 eV are computed 
for the singlet and triplet state, respectively. The 
divergence for the singlet state is a consequence of the 
one-dimensional nature of our model. In two or three 
dimensions the respective integrals yield finite values also 
for singlet states [22]. Though this holds true for any 
geometry, it is rather easy to rationalize for spherical 
objects like atoms. Here, the integral corresponding to eq. 
(10) can be computed using spherical coordinates, among 
them the radius r. In the respective expression the factor r2 

appears. This “removes” the singularity occurring in the 
one-dimensional case if the electrons are at the same 
location. Still, also in three dimensions, the electrostatic 
repulsion is higher for singlet than for triplet states. The 
probability of the two electrons being close to each other 
(and not only at the same point of space) is higher for the 
singlet states. This can also be perceived in our one-
dimensional model (cf. Figure 4). Along the diagonal of 
the contour representation the distance of the two 
electrons is zero. Slightly above and below these 
diagonals their distance is small. In the areas around the 
diagonal, the probability density is much higher for the 
singlet than for the triplet state. 

The large magnitude of the electrostatic repulsion, 
which here could only be computed for the triplet state, 
reminds us to be careful when filling orbitals – atomic or 
molecular – with electrons. Atomic orbitals appearing in 
common textbooks are the ones of the hydrogen atom. 
This atom contains only one electron. Thus, no electron-

electron repulsion has to be considered. If we now naively 
fill these orbitals with electrons to describe other atoms 
this repulsion will not be considered. The same applies for 
the Kuhn model for π-systems. The Kuhn model 
approximates molecular orbitals by PIB wavefunctions 
and makes no allowances for electron-electron repulsion. 
Not so surprisingly pathological numerical values for the 
repulsion result.  

6. Conclusions 

The electrostatic repulsion of electrons is of central 
importance for the energetics of atoms and molecules. 
Due to the Pauli principle the distribution of electrons 
depends on the overall spin of the system. For singlet and 
triplet spin states frequently encountered, differences in 
electron distributions can be visualized using simple 
particle-in-a-box wavefunctions. The respective diagrams 
clearly show that opposed to the singlet state, the electrons 
avoid each other in the triplet state. This avoidance is the 
origin of the exchange energy.  The model can, thus, 
explain the origin of the exchange energy on qualitative 
level. Quantitatively, it fails due to its one-dimensional 
nature and concomitantly diverging numerical values. 
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