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Abstract  Balancing chemical equations is a fundamental skill every chemist—from novice to professional—must 
have. In this report we present a calculator-based, linear algebraic method that balances even the most rigorous 
acidic and basic conditioned redox equations in an expeditious manner. 

Keywords: calculator-based learning, redox equations 

Cite This Article: Matthew S. Fox, “On Balancing Acidic and Basic Reduction/Oxidation Reactions with a 
Calculator.” World Journal of Chemical Education, vol. 3, no. 3 (2015): 74-77. doi: 10.12691/wjce-3-3-4. 

1. Introduction 
The algebraic method for balancing chemical equations 

is traditionally less popular than alternative methods, as 
the corresponding sets of linear equations are often tedious 
to equate. Likewise, using algebra to balance redox 
equations has proven to be even more difficult, allowing 
other methods such as inspection or half-reactions to be 
more commonly taught. Balancing chemical equations 
with linear algebra simplifies the algebraic method; 
however, according to McCoy, [1] “Linear algebra [will] 
not help balance [redox equations] properly.” Many 
authors proceeded to disprove this proposition, [2,3,4] 
while others introduced the necessary reformulations of 
both chemical and redox equations to derive effective 
linear algebraic methods [5,6,7,8,9]. 

It is the purpose of this work to establish a calculator-
based procedure for balancing acidic and basic 
conditioned redox equations. The proposed method is 
appropriate for undergraduate chemistry classes and 
perhaps Advanced Placement courses, provided scientific 
calculators are available. The major contribution in this 
report is the linear algebraic representation of the acidic 
and basic half-reaction procedure. This contribution 
introduces a new, calculator-based method, which has 
potential to alter how balancing redox equations is taught. 

2. Necessary Review 

This manuscript will continually refer to the following 
chemical equation Ac, where 
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where x1 through xr denote both the term and unknown 
coefficient for each compound reacting, xr+1 through xp the 
term and unknown coefficient for each compound being 
produced, and β the net charge associated with each 
compound. 

The first condition for balancing any chemical equation 
asserts the law of conservation of mass. That is, 

 reactant atoms product atoms 0,− =∑ ∑  

where both sides of the above equation refer to the same 
element. [4] For element A in Ac specifically 
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where a denotes the subscript for element A in each term 
of Ac. Reformulating eq 1 for each element in Ac yields 
the linear homogeneous system 
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which is equivalent to the matrix setting 
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[10] 

If the coefficient matrix above is denoted by A and the 
solution vector x , then the system follows the 
homogeneous equation A 0x =



 . [10,11] Solving the 
equation for x  is known as computing the null space, or 
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kernel, of the coefficient matrix A. [10] Thus, the kernel 
of a chemical equation’s coefficient matrix is also the 
solution to the chemical equation, provided the 
stoichiometric coefficients are in their simplest, whole 
number ratios [1]. 

The next condition asserts the net reactant charge must 
be equal to the net product charge. [4] This introduces the 
charge equation, denoted as β(Ac), which is nearly 
identical to eq 1. Formally, 
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If β(Ac) is appended to eq 2, then the corresponding 
matrix setting changes accordingly. Effectively, A gains a 
new row vector equivalent to the net charges associated 
with each compound. Thus, 
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which resembles the general formula to balance any redox 
reaction. 

For example, consider the equation 

 3+ 2+
c 1 2 3 2 4B Cl + Fe Cl + Fe .x x x x−= →  

Here, x1 and x2 represent the set of xr , while 3x  and 4x  

the set of xp. Eq 3 produces β(Bc), where β(Bc) = - 1x + 
3 2x  + 0 3x - 2 4x = 0, with the complete homogeneous 
system equivalent to 
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which is synonymous with eq 4. (Notice how the 
coefficients in the above equations correspond directly to 
the entries in the matrix.) 

The kernel of B is most commonly equated by first 
calculating the reduced row echelon form (rref) of matrix 
B. Inputting B into a scientific calculator and selecting the 
matrix function ‘rref’ yields 
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1 For a TI-84 calculator, input the following commands to obtain the rref: 

2ND, 1, ,x− → → , ENTER, and input the determined coefficient 

To calculate the kernel of B, take the right-most column 
in the rref(B) and append an additional ‘−1’ to the 
bottommost row.2 This obtains 
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From here, multiply each entry by a common factor to 
obtain whole number ratios and the greatest amount of 
positive coefficients possible. For B specifically, 
multiplying by a scalar of −2 yields the kernel of B, where 
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or 

 3+ 2+
22Cl + 2Fe Cl +2Fe .− →  

3. Methods 
In this section we introduce the linear algebraic 

representation of the acidic and basic half-reaction 
procedure. Such representations are the main contributions 
of this article. 

3.1. Reactions in Acidic Solutions 
Remark. In this paper we denote redox equations 
balanced in acidic conditions as A+, where A is the 
coefficient matrix for the chemical equation Ac. 

According to the acidic half-reaction procedure, H+ and 
H2O are appended to separate sides of the initial redox 
equation, and then balanced accordingly. The former 
implies the unbalanced redox equation will have two 
terms appended similar to H2O +…→…+ H+. The linear 
algebraic representation is then two column vectors 
appended to opposite sides of the coefficient matrix 
identical to 

  (5) 

Note the above row vectors will not necessarily be 
applied as cited above. That is, depending on how the 
coefficient matrix A was originally derived, β(Ac), 
                                                                                               

matrix. Once complete, input: 2ND, MODE, 2ND, 1, ,x− →  ALPHA, 

APPS, 2ND, 1x− , ENTER, ENTER. 
2 Note that if the matrix is square, meaning the same number of rows as 
columns, appending the ‘−1’ is not necessary. 
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Hydrogen, and Oxygen will not necessarily be listed in the 
first, second, and third rows, respectively. For sake of 
understanding, however, the row vectors in the examples 
of this paper do follow the order as shown in eq 5. 

Consider the chemical equation Cc, where 

 2 3+
c 1 2 3 3 4 4 5C  = FeS+ NO NO+ SO + Fe .x x x x x−→  

The linear homogeneous system is obtained by following 
eq 2. Consequently, 
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Eq 4 yields 
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which represents the matrix system for Cc. Appending eq 

5 yields the system ( )C 0,x+ =


  or 

  
Notice with the addition of eq 5, x  gains two entries 

due to Cc gaining two terms: H2O and H+. Computing the 
null space of C+ asserts 
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 2 3+ +
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To finish, the compounds with negative coefficients are 
transferred to the opposing side of the equation. [4] Ergo, 

 + 2 3+
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3.2. Reactions in Basic Solutions 
In contradistinction to eq 5, the basic half-reaction 

procedure implies that both OH− and H2O are added to the 
initial redox equation. Chemically, H2O +… →…+ OH−. 
Linear algebraically, 
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or 

 
2 2 4 6 4 6 3

2
2 7 2

2+
3

919H O +10[Cr(N H CO) ] [Cr(CN) ] +

1176MnO4 35Cr O 420CO +

660NO +1176Mn +2798OH .

− −

− −

→ +  

4. The Mathematical Procedure 
The following list enumerates the procedure to balance 

acidic or basic redox equations in an efficient, 
computational process. 

1. Be sure the equation is in its respective net ionic 
representation. 

2. From the information given in the redox reaction, 
produce homogeneous equations for each element. 

3. Establish the homogeneous charge equation from the 
unique charges associated with each compound. 

4. Transform the equations into a matrix system, where 
each row represents each element and each column 
represents each term in the system’s coefficient 
matrix. 

5. Depending on the information in the redox equation 
and whether the equation is to be balanced in either 
acidic or basic conditions, append either eq 5 or eq 6, 
respectively. 

6. Equate the kernel of the coefficient matrix developed 
in the preceding step by utilizing a calculator’s 
reduced row echelon form (rref) matrix function. 

7. Check that the kernel of A has entries in the lowest 
possible whole number ratios with the greatest 
number of positive coefficients possible. 

8. Insert the kernel into the chemical equation and 
check that the equation is balanced. If negative 
coefficients appear in the final equation, transfer 
these coefficients and their corresponding 
compounds to the opposing side of the equation. 

4.1. Limitations 
The rref(A) is only effective if the order of A is m × n, 

where m = n, or m < n by only a difference of 1. 
Fortunately, most redox equations follow these parameters, 
especially after eq 5 or eq 6 is appended. In principle, 
however, if an unbalanced redox equation has a number of 
different elements > the number of unknown coefficients 
(m > n), the linear algebraic method cannot be used. 

5. Conclusion 
The linear algebraic representation of the acidic and 

basic half-reaction procedure was introduced in this paper. 
The representation established a calculator-based method 
to balance redox equations in either acidic or basic 

conditions. The efficiency and intuitiveness associated 
with the proposed method allows students to balance 
rigorous redox reactions in an expeditious fashion, while 
not undermining the essential laws governing balanced 
reactions. 

A potential criticism regarding the proposed method is 
intuition on the linear algebra used to produce the 
chemical result. Linear algebra is a complex subset of 
mathematics traditionally offered to sophomores and 
juniors in college. It is for this reason that the method is 
not rigorously proven to yield the chemical solution. 
Albeit a proof does exist, it is unnecessary to show as the 
procedure is calculator based; and as such neither the 
student nor the teacher is responsible for linear algebraic 
interpretation—only chemical. 
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