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Abstract  Much attention has been paid to thermodynamic modeling of nanosystems. A common approach 
consists in addition of a surface/interface term to the Gibbs energy of bulk materials and application of general 
conditions of equilibrium. Some discrepancy still remains dealing with the expression for surface contribution to 
molar Gibbs energy and chemical potential of components. It is shown, that due to the nonextensive nature of the 
surface area, these contributions are different for molar and partial molar quantities. The consistent expressions for 
the molar Gibbs energy and chemical potential of a single-component spherical nanoparticle are put forward along 
with the simple derivation of the Kelvin and Gibbs-Thomson equations. 
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1. Introduction 
Recently, much attention has been paid to calculation of 

phase diagrams of nanoalloys [1,2,3,4,5] as well as 
calculation of equilibrium constants of chemical reactions 
in nanosystems [6,7,8,9]. A common approach consists in 
addition of a surface/interface term to the Gibbs energy of 
bulk materials and application of general conditions of 
equilibrium in a closed system at constant temperature and 
pressure, namely equality of chemical potentials of 
individual components in coexisting phases or zero Gibbs 
energy of reaction. Surprisingly, some discrepancy still 
remains dealing with the expression of chemical potential 
of the involved components. Two quite similar but diverse 
terms are used for the surface contribution to Gibbs 
energy of spherical nanoparticles of radius r, namely 
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This apparent controversy has been a subject of 
discussion and has been referred in a number of recently 
published papers [10-15]. The purpose of our contribution 
is to correctly derive relations for the molar Gibbs energy 
and chemical potential of single-component spherical 
nanoparticle and explain this apparent discrepancy. 
Moreover, the relation for chemical potential of 
nanoparticle is used for simple elucidation of the Kelvin 
and Gibbs-Thomson equations. 

2. Homogeneous Functions 
First, we recall the fundamental theorems about

homogeneous functions for a better understanding of 
further explanation. A function F(x) of variable x is called 
the homogeneous function of the k-degree if it holds 

 ( ) ( ).kF ax a F x=  (1) 

The Euler theorem gives for any homogeneous function 
of the k-degree the relation [16] 
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For the homogeneous functions of the first order, and 
only for them, the relationship (2) results in 
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3. Gibbs Energy of Single-component 
Nanoparticles 

3.1. Total Gibbs Energy of Nanoparticle 
Suppose a spherical nanoparticle of radius r consisting 

of n moles of the given substance. The total Gibbs energy 
of this particle Gnp can be express as 

 np b s b .mG G G nG Aγ= + = +  (4) 

The superscripts b and s stand for the bulk and surface 
terms, respectively, Gb

m is the molar Gibbs energy of the 
bulk, γ denotes the surface energy (a reversible work that 
must be exerted to create a new surface/interface of unit 
area) and A is the total surface/interface area. The bulk 
contribution Gb is a homogeneous function of the first 
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order of the amount n (extensive properties) [16] and it 
holds 
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The surface contribution to the Gibbs energy of a 
spherical nanoparticle of radius r can be expressed as 
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where C = γ(4π)1/3(3Vm)2/3 and Vm stands for molar volume. 
It follows from eq. (6) that the surface contribution to 
Gibbs energy is not an extensive property [17,18,19] but a 
homogeneous function of the order 2/3 (degree of 
homogeneity k = 2/3) of the amount n. Hence it yields, 
according to the Euler theorem (2), the relation 
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The total Gibbs energy of the nanoparticle is not a 
homogeneous function of the amount n as the condition (1) 
is not met. 

3.2. Molar Gibbs Energy of Nanoparticle 
The molar Gibbs energy of a spherical single-component 

nanoparticle of radius r is given as 
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Based on the simple geometrical relations valid for a 
spherical nanoparticle of radius r 

 4 32 34 , , .
3

AA r V r
V r

π π= = =  (9) 

the expression for the molar Gibbs energy is given as 
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3.3. Partial Molar Gibbs Energy (Chemical 
Potential) of Nanoparticle 

The chemical potential (partial molar Gibbs energy) of 
a spherical single-component nanoparticle of radius r is 
given as a partial derivative of Gibbs energy G with 
respect to substance amount n at constant temperature and 
pressure. It holds for the bulk contribution1 

1 Constant pressure pin within a particle is considered here which is, due 
to the surface stress f, higher than the pressure p in the surroundings. The 
condition of constant pin means such a variation of the surroundings 
pressure p to eliminate any changes in pin associated with changes ot the 
particle radius r. These variables are interconnected via the Young-
Laplace equation pin - p = 2f/r. 
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Similarly the surface contribution can be expressed as 
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We consider here only isomorphic changes of a particle, 
e.g. the changes of particle volume without any shape 
changes, and so (∂A/∂V) = 2/r. 

Thus 
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The difference between the surface contribution to the 
molar Gibbs energy and chemical potential of Au 
nanoparticle of radius r is shown in Figure 1. 

 
Figure 1. (Color online) The difference between surface contribution to 
molar Gibbs energy and chemical potential of Au nanoparticle of radius r 
(Vm = 10.6×10-6 m3 mol-1, γ = 1.764 J m-2) 

It follows from the above presented equations that both 
surface terms are correct but with a different meaning. 
Due to the fact, that equilibrium conditions are always 
derived from differential relations dG = 0 or dF = 0, the 
surface term with the multiplier 2 (eq. (13)) should be 
correctly used. 

4. Applications for Gas-liquid and  
Solid-liquid Equilibria 

Suppose a solid or liquid spherical nanoparticle (phase 
α) of radius r which is surrounded by a fluid phase (phase 
β). Let such a system be closed at a constant temperature T 
and pressure of fluid phase p. The pressure pin within the 
condensed nanoparticle is, due to the surface stress, higher 
than the pressure of fluid phase. If the pressure 
dependence of the condensed phase molar volume is 
neglected the following relation should be satisfied at 
equilibrium [20,21] 
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This equation has the general form F(T,p,r) = 0 and 
setting one of the variables T, p or r, a dependence 
between the other two can be obtained. 

Considering a liquid nanoparticle (nanodroplet) - vapor 
equilibrium at a constant temperature T and pressure pr the 
well-known Kelvin equation should be simply derived 
from Eq. (14) 
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where p∞ is the equilibrium pressure of the vapor above 
the plane surface and pr above the surface with curvature 
1/r. Note that the difference Gm,l(pr) - Gm,l(p∞) has  
been omitted. Calculated vapor pressures of selected 
liquid metals at their melting points above spherical 
nanodroplets of radius r according to the Kelvin equation 
(16) are shown in Figure 2. 

 
Figure 2. (Color online) Calculated vapor pressures of selected liquid 
metals at their melting points above spherical nanodroplets of radius r 
according to the Kelvin equation (16) 

Considering a solid nanoparticle - liquid phase (melt) 
equilibrium at a constant temperature Tfus,r and pressure p, 
the Gibbs-Thomson equation should be derived in the 
form 
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Tfus,∞ is the equilibrium melting temperature for a 
macroscopic solid and Tfus,r for a spherical nanoparticle of 
radius r. Note that the temperature dependence of the 
enthalpy of melting has been omitted. Calculated melting 
temperatures of selected metals in the form of spherical 

nanoparticles of radius r according to the Gibbs-Thomson 
equation (18) are shown in Figure 3. 

 
Figure 3. (Color online) Calculated melting temperatures of selected 
metals in the form of spherical nanoparticles of radius r according to the 
Gibbs-Thomson equation (18) 

5. Conclusion 

In this article, a controversial issue in nano–
thermodynamics, namely the correct form of surface 
contributions to the molar Gibbs energy and chemical 
potential of single–component nanoparticles is explained. 
To better understand this difference it is convenient to use 
a formal approach based on the homogeneous functions 
formalism. Moreover, using the correct form of the 
equilibrium condition (the equality of chemical potentials) 
simple derivation of Kelvin and Gibbs–Thomson 
equations is presented. 
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