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Abstract  The rapid advance in information technology requires further developments in all areas of education. In 
this context, one should think about going beyond the use of digital media for the mere presentation of scientific 
content. Interactive computer simulations allow quasi-experimental investigations of scientific phenomena but for 
students they usually remain black-box approaches. For a deeper understanding of phenomena, it is desirable to go 
one step further and set up computer codes based on a given microscopic model as part of the chemical education. 
Such approach allows teaching the scientific topic in more depth, fosters the awareness of the relevance of 
mathematics and computing in chemistry, and lastly supports the self-directed investigation of a scientific 
phenomenon. In addition, it gives students the opportunity to learn in general about modelling which has become an 
important contribution to chemistry and other natural and engineering sciences. Here we discuss basic 
chromatography with a simplistic stochastic simulation method suitable for upper secondary education. In addition, 
the analytical solution of the processes is given at the level of secondary mathematics. Chromatography itself is 
potentially treated in secondary education at various levels from paper chromatography to gas chromatography. This 
general knowledge makes it more accessible to students as a subject for deepening by modeling and simulation. 
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1. Introduction 

The focus of this contribution is to provide a topic in 
secondary education that is suitable for introducing 
modelling and simulation in chemistry and is related  
to mathematics at the same level. The aims of  
this task are manifold. Besides introducing modelling  
and simulation it is focused on the deepening of chemical 
knowledge in chromatography and further related chemical 
topics. 

1.1. Modelling and Simulation  
Without doubt, computational methods are important in 

chemical sciences research. However, in the preparation 
of students in secondary education, modeling and 
simulation are less visible. There is a general proposal to 
teach what is called computational thinking in computer 
science. This idea has been proposed and developed 
several times in recent decades [1]. The most recent call 
for implementing computational thinking in K-12 
education (kindergarten through grade 12) was by Wing 
[2]. Wing claims that computational thinking is of  
importance for everyone not just computer scientists. No 
matter whether students who likely will not enter  
 

computer science benefit from this way of thinking or not, 
it is important to give students in upper secondary 
education the opportunity to learn about the existence of 
such methods in general and in the context of chemistry. 
They should learn that experiments and theoretical 
methods complement each other and in this way get a 
more realistic view on chemistry.  

Even though the focus here is rather on chemistry than 
on computational thinking itself, we can profit from those 
ideas. It is stated [1] that the most appropriate definition of 
computational thinking is given by Aho [3]: “thought 
processes involved in formulating problems so their 
solution can be represented as computational steps and 
algorithms”. More generally, computational thinking can 
be regarded as “device independent computational process” 
[4] being the intersection set of electronic computing and 
biologic computing by humans. So computational thinking 
should rather be separated from developing computer 
codes only but may be regarded as procedural thinking [5]. 
We can use this approach to set up a computer code for a 
chemical problem by starting with a general procedure. 
Here we realize this by a board game with a game 
instruction acting as a procedure. This procedure can be 
used to set up a pseudo code, which is not yet a runnable 
computer code but a device independent computational 
process. Finally, we transfer the pseudo code to a real 
computer code that performs the simulation.  
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1.2. Chromatography 
Chromatography can be introduced experimentally in 

secondary education at several levels. We can use paper 
chromatography already in lower secondary education, for 
example, for the decomposition of plant colors or felt pen 
colors. In upper secondary education, we can use gas 
chromatography with a simple column and a thermal or 
electric conductivity detector for decomposing lighter gas. 
Besides these practical applications, chromatography 
allows to treat several general phenomena in chemistry 
such as diffusion and molecular interactions.  

Here we propose a stochastic simulation of chromato-
graphy feasible in high school. The resulting simulation 
code gives the students the opportunity to investigate the 
system with their simulation program by variation of the 
input parameters. Such modeling allows relating the 
particle model of matter to measurable macroscopic 
properties by statistical methods. While the behavior of 
each single particle is randomized and hence not 
predictable, the resulting macroscopic behavior follows 
the laws of stochastics. In this way, students learn from a 
simple example how a simulation works in principle 
beyond their perception of a black box. In case of stochastic 
simulations, it is additionally possible to introduce the 
relation between the molecular interaction energy and 
stochastics. Of course, there are many other approaches 
such as molecular dynamics simulations, mesoscale 
simulations, or continuum simulations, which should be 
mentioned to students at least to avoid the impression that 
all simulations are based on random numbers.  

The fundamental molecular theory of chromatography 
goes back to Giddings and Eyring in 1955 [6]. Felinger 
has published a recent review in this field [7]. As a 
process being related to diffusion and interactions, several 
authors have modeled chromatography by stochastic 
simulations [8,9,10,11]. This includes also investigations 
of the underlying diffusion with the Ehrenfest urn model 
[12] rather on a fundamental level [13,14].  

In educational science, chromatography is treated also 
for a long time. An early introduction goes back to 1969 
[15]. Over the years several games have been proposed to 
introduce chromatography at the upper secondary and 
introductory level [16,17,18,19,20,21,22].  

The educational approach here is to employ chromato-
graphy as an example for a theoretical investigation. 
Similarto scientific research approaches the process is 
divided into several detailed contributions. In order to relate 
microscopic processes to macroscopic phenomena one 
usually begins with the simplest possible model for a certain 
effect. Once this model is understood, one may successively 
add additional microscopic effects and observes the resulting 
macroscopic behavior of the system. This allows relating 
changes in macroscopic observations to the microscopic 
contributions. Here, within chromatography there are five 
steps: 

•Diffusion 
•Chromatography without stationary phase 
•Chromatography with stationary phase 
•Reconstruction of a chromatogram on the time axis 
•Deviation from the linear adsorption isotherm 
As we will see, each of these steps leads to a charac-

teristic change in the chromatogram. Still the approach 

used here is relatively simple and covers only the basics. It 
is not meant to model experimental data quantitatively. A 
quantitative predictive simulation of chromatography 
requires to model molecular interactions in detail and 
much more advanced simulation techniques as, for 
example, described in a work on reversed-phase liquid 
chromatography [23].  

Depending on the local curricula, the simulation of 
chromatography in chemistry also allows crosslinking  
to mathematics. This focuses on the binomial and  
the Gaussian distribution, which are obtained in the 
simulations here. 

2. Methods 

The process of setting up a simulation for chromatography 
requires several steps. Here we begin with the diffusion of 
a substance from a given starting position with fixed 
center of gravity of the dispersed substance. This means 
that the substance is not moving with a mobile carrier 
substance. The second step involves moving the center of 
gravity along a (virtual) tube. The third step is the 
inclusion of a stationary phase interacting with the 
substance. This leads to different retention times and 
allows separating two substances. Then, an experimental 
chromatogram is reproduced on the time axis. Finally, 
peak tailing is considered. Besides the scientific 
systematics this stepwise introduction allows deciding 
how detailed the topic is treated in a specific course which 
may depend on the educational level and capability of the 
students.  

2.1. Diffusion 
Diffusion was first described as Brownian motion [24] 

which is the random movement of macroscopic particles 
in liquids and gases. Fick set up two equations for 
modelling diffusion [25]. The first law of Fick describes a 
steady state diffusion with a constant concentration 
gradient while the second law accounts for changes in the 
concentration gradient. Einstein obtained the Gaussian 
distribution as solution for the Brownian motion. In this 
context, he also obtained the relation of the diffusion 
coefficient to the mean square displacement of the 
molecules [26].  

Here, we start with the simulation of a one-dimensional 
diffusion of a substance around its center of gravity at 
position 𝑥𝑥 = 0  known as random walk model. To 
introduce the simulation method and to get a simple 
starting point for setting up a computer algorithm we 
begin with a board game. This game has been successfully 
employed here in a math course as an alternative to the 
Galton board [27] for the introduction of the binomial 
distribution. The only mathematical difference is the 
transformation from the play stone position 𝑥𝑥 to the index 
𝑖𝑖 of the binomial distribution as discussed below.  

In Figure 1a the initial setup for 12 stones representing 
12 molecules diffusing along the 𝑥𝑥 -axis is shown. The 
stones are either numbered or in numbered lanes. All 
stones start at position 𝑥𝑥 = 0 . The 𝑥𝑥 -coordinate is 
numbered at the bottom of the board. Now we chose at 
random one of the 12 stones with equal probability of 1/12. 
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This can be realized by a dodecaeder dice or by a random 
number generator app for mobile phones1

 

. An app also 
allows using more than just 12 stones which it advisable 
in order to get a more meaningful distribution function. 
Once a stone is chosen we have to decide whether to move 
it into positive or negative direction. For this, a coin may 
be used. Then we move the chosen stone in the chosen 
direction and repeat the whole process many times. It is 
important to find a good end point because over time 
stones will leave the game board. For example, it turned 
out to be a good choice for 12 stones to stop when the first 
stone reaches 𝑥𝑥 = −4  or 𝑥𝑥 = 4 . Figure 1b shows a 
possible outcome with the distribution at the top. Due to 
the small number of stones, the distribution function is 
statistically not very meaningful but we can average the 
data of all student groups in class to obtain a more realistic 
distribution. In this context is important that all averaged 
data are for the same number of steps. One scope of game 
board besides the activity is to introduce the procedure for 
setting up a code as discussed below.  

Figure 1. a) Setup of a stochastic board game for the diffusion along the 
𝑥𝑥 -coordinate. The numbers at the bottom represent the position; the 
numbers at the left side represent the numbers of the stones. b) Outcome 
of a specific game. At the top, the corresponding distribution is depicted 

 
Figure 2. Stochastic tree diagram for the probability reaching a position 
on the 𝑥𝑥-axis given by the number in the boxes. The tree is for four time 
steps 𝑡𝑡 = 4. Here 𝑝𝑝 = 1/2 is the probability to move in either direction 
at random. A corresponding empty worksheet is provided in the 
Supporting Information 
                                                            
1  For example: Random Generator Plus – Dice, Lotto, Coins by 
RandomAppsInc  

With a worksheet for a stochastic tree as depicted in 
Figure 2, the students can approach the distribution 
function by counting the number of paths that end at a 
given position. For example, after four time steps (𝑡𝑡 = 4) 
there is only one way to reach 𝑥𝑥 = −4 namely moving 
four times to the left. To reach 𝑥𝑥 = −2  there are four 
paths, depending at which step the move to the right is 
done. The number of paths to the different positions turn 
out to be 1 4 6 4 1 which are apparently the binomial 
coefficients that may be familiar to students from the 
Pascal triangle as well. To verify this we can do the same 
analysis for 𝑡𝑡 = 3  and 𝑡𝑡 = 2 . The probability for each 
single path is the product of the probabilities along the 
path. Here for the single step probability of 𝑝𝑝 = 1/2 and 
four steps it follows a probability 1/16 for each single 
path. Multiplying the number of paths with the single path 
probability 0,0625  gives the binomial distribution 
depicted in Figure 3.  

 
Figure 3. Probability distribution for the diffusion game for 𝑡𝑡 = 4. The 
𝑥𝑥-axis is the position while 𝑖𝑖 is the index of the binomial distribution 
(𝑥𝑥 = 2𝑖𝑖 − 𝑡𝑡) 

The general equation for the binomial distribution is 
given by: 

 𝑃𝑃𝑡𝑡;𝑝𝑝(𝑖𝑖) = �𝑡𝑡𝑖𝑖� ∙ 𝑝𝑝
𝑖𝑖 ∙ (1 − 𝑝𝑝)𝑡𝑡−𝑖𝑖  (1) 

Here we have to apply the transformation from the 
positions of the stones along the 𝑥𝑥-axis to the index 𝑖𝑖 of 
the binomial distribution with 𝑖𝑖 = (𝑥𝑥 + 𝑡𝑡)/2 (see Figure 3).  

In the next step we link the mathematical model to the 
physical-chemical properties. According to Fick’s laws 
[25] the diffusion coefficient 𝐷𝐷 represents the magnitude 
of diffusion. It is related to the mean square displacement 
∆𝑥𝑥2 by [26]: 

 ∆𝑥𝑥2 = 2𝐷𝐷𝑡𝑡. (2) 

This specific equation is valid for one-dimensional 
diffusion as considered here. The mean square displace-
ment can be identified by the standard deviation of the 
binomial distribution: 

 𝜎𝜎2 = 2𝐷𝐷𝑡𝑡. (3) 

Generally, in equation 2 and 3 the variable 𝑡𝑡 is the time 
in seconds. Here we may identify the real time with the 
number of steps 𝑡𝑡 , which justifies the use of the same 
symbol. Doing so and inserting equation 4 yields here 
𝐷𝐷 = 1/8. 

A rigorous derivation of the standard deviation for the 
one-dimensional random walk model is given in the 
appendix. Since this is beyond secondary mathematics one 
may make the solution plausible to students based on their 
knowledge of the binomial distribution and its expression 

http://pubs.sciepub.com/wjce/8/3/3/Supporting-Information_10.12691-wjce-8-3-3.zip�
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for the expectation value and the standard deviation. For 
this approach we start with the equation for the regular 
standard deviation of the binomial distribution on the axis 
of its index 𝑖𝑖: 

 𝜎𝜎𝑖𝑖 = �𝑡𝑡 ∙ 𝑝𝑝 ∙ (1 − 𝑝𝑝) (4) 

With the equation for the expectation value of the 
binomial distribution on the 𝑖𝑖 -axis 𝜇𝜇𝑖𝑖 = 𝑡𝑡 ∙ 𝑝𝑝 , and with 
𝑝𝑝 = 1/2 we obtain:  

 .
2
µ

σ = i
i  (5) 

Now we apply the transformation from the index of the 
binomial distribution to the 𝑥𝑥 -axis (𝑥𝑥 = 2𝑖𝑖 − 𝑡𝑡 ) to the 
expectation value. We may argue to neglect the term −𝑡𝑡 
because the standard deviation - being the width of the 
distribution - does not change when we shift the 
distribution function along the abscissa. Finally, we obtain:  

 σ µ=x i  (6) 

The expectation value on the scale of the binomial 
index 𝑖𝑖 is the average number of moves per stone  
𝜇𝜇𝑖𝑖 = 𝑛𝑛run /𝑛𝑛A . Here 𝑛𝑛run is the number of moves and 𝑛𝑛A is 
the number of molecules of type A. Hence, we may compare 
the accuracy of the game results to the analytical solution:  

 run A/ .σ =x n n  (7) 

For this, the standard deviation of the board game data 
can be calculated using 𝜇𝜇𝑥𝑥 = 0 and the number of stones 
𝑛𝑛𝑥𝑥at position 𝑥𝑥 by: 

 
max

2

A max

1 .
1

σ
=−

=
− ∑ 

x

x x
x x

n x
n

 (8) 

From students who are familiar with the binomial 
distribution from mathematics as for example in German 
upper secondary education, one can expect the knowledge 
of equations 1, 4, 8, and the equation for the expectation 
value. The mean square displacement has to be introduced 
at this level. The transformation between 𝑥𝑥 - and 𝑖𝑖 -axes 
can be elaborated by students if they know equation 1 and 
have evaluated the tree in Figure 2. 

However, the accuracy of the game is not sufficient. It 
requires much more stones and steps to obtain a 
reasonable distribution. Therefore, we set up a computer 
algorithm that simulates the game and allows enlarging 
the system significantly. Due to the simple game rules, it 
is relatively straightforward to set up the corresponding 
computer algorithm. Such a code based on the game 
instruction is listed in Table 1(Supporting Information). 
Furthermore, a runnable code written for an educational 
Python application is provided in the Supporting 
Information. With respect to computer science, the code 
contains several basic programming structures such as 
loops and conditional statements. During the calculation, 
the data are saved in a file for plotting and further analysis. 
In Figure 4 the results for a simulation with 104stones for 
2 ∙ 106 and 8 ∙ 106 moves are shown. The solid curves are 
calculations with the Gaussian distribution using the input 
parameter 𝜎𝜎𝑥𝑥 = �𝑛𝑛run /𝑛𝑛A . This is possible because the 
binomial distribution can be approximated by the 

Gaussian distribution according to De Moivre and Laplace 
for 𝑡𝑡 ∙ 𝑝𝑝 ∙ (1 − 𝑝𝑝) > 9. For 𝜇𝜇𝑥𝑥 = 0 it is given by: 

 𝑔𝑔(𝑥𝑥) = 1
√2𝜋𝜋𝜎𝜎𝑥𝑥

exp �−𝑥𝑥
2

2𝜎𝜎𝑥𝑥2
�. (9) 

Table 1. Pseudo computercode (right) by means of a general 
illustration of the algorithm not yet for a specific computer language. 
The code is based on the instruction (left) of the diffusion game 
without movement of the center of gravity. 

 
Figure 4. Result of the diffusion simulation for 𝑛𝑛A = 104 , 𝑛𝑛run = 2 ∙
106  (red), 𝑝𝑝 = 1/2, and𝑛𝑛run = 8 ∙ 106  (blue). The solid curves are the 
corresponding Gaussian distributions 

2.2. Taylor Dispersion like-Chromatography 
A difference between diffusion and chromatography is 

the transport of the substance with a mobile phase. Hence, 
the center of gravity is not fixed 𝑥𝑥 = 0 but moves with a 
certain velocity while the diffusion takes place around the 
center of gravity. If there is no stationary phase that 
interacts with the moving substance, we observe the so-
called Taylor dispersion [28,29]. This method is used for 
example to measure diffusion coefficients of solutes in 
supercritical fluids [30]. For this, the solute is injected in a 
flow of supercritical carbon dioxide in an empty tube. In 
that application the diffusion coefficient is obtained from 
the widening of the peak. Due to the simplistic approach 
here, we omit any characteristics of the flow such as a 
laminar velocity profile, which are important within the 

Set number of stones 𝑁𝑁A  
Set the number of moves 𝑁𝑁run  
Put all stones 𝑖𝑖 to position 𝑥𝑥 = 0 
Number of stones in all positions is 0 
and all stones are put in position 0 

NA = 1000 
Nrun = 1000000 
xpos[i] = 0 
npos[i] = 0 
npos[0] = NA 

Start with a loop of the game: 
Chose one stone 𝑖𝑖 at random 
Chose the direction 𝑖𝑖𝑖𝑖 at random 

 
i = random(1,NA) 
id = random(0,1) 

If 𝑖𝑖𝑖𝑖 = 0 (move right) then 
increase the position variable of stone 𝑖𝑖 
by one 
auxiliary variable 
decrease the number of stones on old 
position 
increase the number of stones in new 
position 

if id=0 then 
xpos[i] = xpos[i] +1 
xp = xpos[i] 
npos[xp-1] = npos[xp-1] -1 
npos[xp] = npos[xp] +1 

else (move left) 
decrease the position variable of stone 𝑖𝑖 
by one 
auxiliary variable 
decrease the number of stones on old 
position 
increase the number of stones in new 
position 

else 
xpos[i] = xpos[i] -1 
xp = xpos[i] 
npos[xp+1] = npos[xp+1] -1 
npos[xp] = npos[xp] +1 

repeat loop 𝑁𝑁run  times repeat Nrun 

http://pubs.sciepub.com/wjce/8/3/3/Supporting-Information_10.12691-wjce-8-3-3.zip�
http://pubs.sciepub.com/wjce/8/3/3/Supporting-Information_10.12691-wjce-8-3-3.zip�
http://pubs.sciepub.com/wjce/8/3/3/Supporting-Information_10.12691-wjce-8-3-3.zip�
http://pubs.sciepub.com/wjce/8/3/3/Supporting-Information_10.12691-wjce-8-3-3.zip�
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Taylor dispersion method [28]. So we just have a process 
with similarity to the full Taylor dispersion. 

 
Figure 5. Initial state of the game board for the simulation of the Taylor 
dispersion-like approach. The numbers at the bottom are the 𝑥𝑥-position. 
The numbers at the left are the numbers of the stones. Here only 
movement in one direction is required 

The corresponding board game as well as the computer 
algorithm for the Taylor dispersion-like simulation is even 
simpler than for local diffusion because the stones need to 
be moved only in one direction. The initial state is 
depicted in Figure 5. With dice or a random number 
generator app one of the stones is chosen with equal 
probability. This stone in then moved one step towards 
increasing x-value. The corresponding computer algorithm 
is listed in Table 2(Supporting Information). Here, the 
expectation value on the 𝑥𝑥-axis is given by the average 
movement per stone 𝜇𝜇𝑥𝑥 = 𝑛𝑛run /𝑛𝑛A . The standard 
deviation is the same as for diffusion.  

Table 2. Pseudo computercode (right) by means of a general 
illustration of the algorithm not yet for a specific computer language. 
The code is based on the instruction (left) of the Taylor dispersion-
like game. 

Set number of stones 𝑁𝑁A  
Set the number of moves 𝑁𝑁run  
Put all stones to position 𝑥𝑥 = 0 
Number of stones in all positions is 0 
and all stones are put in position 0 

1 NA = 1000 
2 Nrun = 1000000 
3 xpos[i] = 0 
4 npos[i] = 0 
5 npos[0] = NA 

Start with a loop of the game: 
Chose one stone 𝑖𝑖 at random 
increase the position variable of 𝑖𝑖 by 
one 
auxiliary variable 
decrease the number in old position 
increase the number in new position 

6 
7 i = random(1,NA) 
8 xpos[i]= xpos[i] +1 
9 xp = xpos[i] 
10 npos[xp-1] = npos[xp-1] -1 
11 npos[xp]= npos[xp] +1 

repeat 𝑁𝑁run  times 12 repeat Nrun 
 
In Figure 6 the result of a simulation is shown. One can 

clearly recognize the Gaussian distribution and the 
expectation value 𝜇𝜇𝑥𝑥 = 200  according to the above 
equation. It should be noted that the distribution is rather 
asymmetric at the very beginning because no moves in 
negative directions are possible. However, after a certain 
amount of steps it becomes symmetric. It should also be 
mentioned, that this approach does not allow varying the 
velocity of a mobile carrier gas because there is no explicit  
 
 

carrier gas. The transport is the result of a directional 
diffusion towards positive 𝑥𝑥-values only.  

 
Figure 6. Results after 𝑛𝑛run = 2 ∙ 106 steps for a Taylor dispersion-like 
simulation for 𝑛𝑛A = 104 molecules 

2.3. Stationary Phase 
In the next step, a stationary phase in introduced 

mathematically. In chromatography the stationary phase is 
required for the separation of substances due to the 
different interactions between the substances and the 
stationary phase. The distribution of the solute between 
the mobile phase and the stationary phase is described by 
the distribution law of Nernst: 

 ads

m
=

c
K

c
 (10) 

Here 𝐾𝐾 is the equilibrium constant, 𝑐𝑐ads  the concentration 
in the adsorbed phase, and 𝑐𝑐m  the concentration in the 
mobile phase. This law gives a linear adsorption isotherm, 
which is the ideal case resulting in symmetric peaks in the 
chromatogram. Deviations from the linearity are related to 
asymmetric peaks with tailing or fronting.  

A way to mimic the retention of a substance by a 
stationary phase is the introduction of a probability of a 
chosen molecule actually to be moved. A molecule that is 
strongly interacting with the stationary phase may be 
moved with a probability of, for example, 10% while 
another molecule with vanishing interaction is moved with 
100% probability. 

Hence, the interaction is represented by the probability 
to move the molecule. Once a stone is chosen in the game, 
one draws another random number and moves the stone 
depending on the outcome of the second random number. 
Within the simulation a second random number 𝑖𝑖acc ,A  is 
drawn for substance A from 1  to 𝑛𝑛acc ,A . The stone is 
moved only if 𝑖𝑖acc ,A = 1. This corresponds to a probability 
for moving of 1/𝑛𝑛acc ,A . We can implement this in the 
code in Table 2(Supporting Information) by introducing 
just two lines between lines 7 and 8: 

iaccA = random(1,naccA) 
if iaccA = 1 then continue lines 8 to 11 
Here, lines 8 to 11 become part of the conditional 

statement. In order to simulate the separation of two 
substances the algorithm needs to be doubled. A 
corresponding program code is provided in the Supporting 
Information.  

http://pubs.sciepub.com/wjce/8/3/3/Supporting-Information_10.12691-wjce-8-3-3.zip�
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Figure 7. Output of a simulation for two substances with the acceptance 
parameters 𝑛𝑛acc ,A = 1 (blue) and 𝑛𝑛acc ,B = 4 (red). The mole fraction is 
𝑥𝑥A = 0,5 , i.e. the peak areas are identical. The number of steps is 
𝑛𝑛𝑟𝑟𝑟𝑟𝑛𝑛 = 8 ∙ 106, the total number of molecules 𝑛𝑛A + 𝑛𝑛B = 105. From the 
simulation data we obtain 𝜇𝜇A = 694,7 ; 𝜎𝜎A = 26,56 ; 𝜇𝜇B = 173,9  and 
𝜎𝜎B = 13,19. A code is provided in the Supporting information 

In Figure 7 the result of such simulation is shown. The 
simulated peaks are in excellent agreement with the 
corresponding Gaussian distribution. This chromatogram 
is different to that of gas chromatography because it 
represents the distribution of the two substances along the 
column (𝑥𝑥 -axis) and not the signal of the detector as 
function of time. On the other hand, the paper chromato-
graphy representation at the bottom actually corresponds 
to an experimental paper chromatogram. The retention 
time can be calculated from the velocity of the peak 
maxima and the length of the column from injection to 
detector at the end of the abscissa. It is obtained in 
reduced units and may be related to the real retention time 
if the length of the stationary phase is related to the real 
column length and the number of steps is related to the 
real time. 

2.4. Simulation of Lighter Gas 
Chromatogram 

The experimental realization of gas chromatography in 
upper secondary education is challenging but it is possible 
with limited resources. Choguill [31] has proposed a 
simple self-made chromatograph designed for high school. 
He used nitrogen as carrier gas, a glass column filled with 
firebrick soaked with heavy silicon oil, and used a thermal 
conductivity cell as detector. Cowan and Sugihara  
constructed an inexpensive apparatus for the separation of 
mixtures of organic substances [32]. For detection, they 
measured the change in temperature above the hydrogen 
flame by means of a thermocouple. McLean and Pauson 
[33] used a similar apparatus but detected the emerging 
chlorinated organic substancs by a copper wire that gives 
a green flame of volatile copper halides. Another low cost 
gas chromatograph suitable for high school has been 
developed by Kappenberg [34]. Lorke and Sommer [35] 
investigated how chromatography is taught in high school. 
They reported that chromatography is often introduced by 
paper chromatography in an early stage when students 
have not yet a concept of interactions and conclude, that it 

should repeated on a higher level in upper secondary 
education. 

In order to simulate a system that we can obtain in an 
experiment we can use lighter gas [34]. For setting up the 
simulation it is necessary to relate the experimental 
retention time to the acceptance parameters 𝑛𝑛acc ,X  of 
component X. It turns out that a linear relation of the 
retention time to 𝑛𝑛acc ,X  is suitable. In order to avoid large 
values for 𝑛𝑛acc ,X  and hence lengthy simulation runs, all 
retention times can be divided by a constant.  

For example, the chromatogram depicted in Figure 8 is 
based on the retention times 58s (ethan), 75s (propane), 
107s (methylpropane), and 123s (n-butane) [34]. Here we 
divide these values by five and get for 𝑛𝑛acc ,X the values 12, 
15, 21, and 25 respectively. The experimentally obtained 
mole fractions of the substances are multiplied with the 
total number of molecules in the simulation 𝑛𝑛tot = 3 ∙ 104. 
In Figure 8 the values for the mole fractions (number of 
molecules) are 0,0091 (273), 0,3761 (11283), 0,1905 
(5715), and 0,4242 (12729) in the same order as above. 
The program for calculatingFigure 8 is provided in the 
Supporting Information. 

 
Figure 8. Simulated chromatogram of a lighter gas. (𝑛𝑛run = 2 ∙ 106 steps; 
𝑛𝑛tot = 3 ∙ 104 molecules). Retention time parameters and mole fractions 
are given in the text. 1: ethane; 2: propan; 3: methylpropane;  
4: n-butane 

In order to construct the chromatogram on the time axis 
we have to position a detector at some point along the 
column. In experiments, the detector is at the end of the 
column but if we want to observe the chromatogram on 
both axis it should be placed significantly before the end 
of the column. The number of successful moves divided 
by the total number of molecules in the system appears to 
be a useful measure for the time. Still the choice of the 
time axis is arbitrary and in the end it has to be related to 
the real time axis. If we divide the expectation value of the 
Gaussian distribution on the time axis (at the maximum) 
by the above given experimental retention time 𝑡𝑡r  we get a 
constant of about 3,63 for this specific simulation. Hence, 
the real time in seconds is the simulation time 𝑡𝑡sim  divided 

http://pubs.sciepub.com/wjce/8/3/3/Supporting-Information_10.12691-wjce-8-3-3.zip�
http://pubs.sciepub.com/wjce/8/3/3/Supporting-Information_10.12691-wjce-8-3-3.zip�
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by 3,63. However, the peak area on the time axis 𝑁𝑁𝑡𝑡  does 
not correspond to the peak area on 𝑥𝑥-axis 𝑁𝑁𝑥𝑥 . Since the 
peak area is the amount of molecules 𝑁𝑁 they should be 
identical on both axis. Here we find for the simulation 
shown in Figure 8 a linear relation between the ratio of the 
peak areas and the simulation time given by 𝑁𝑁𝑡𝑡/𝑁𝑁𝑥𝑥 =
0,0028 ∙ 𝑡𝑡sim  (ranging from 0,6 to 1,3 for the four 
substances). This may be explained by the fact that a 
“faster” substance passes the detector faster and appears 
therefore slimmer on the time axis as a slower peak. This 
can be observed very clearly in simulations with two 
substances of equal amount. Here we have to be reminded 
that the flow of the substances in the column is caused 
here by directional diffusion only. There is no contribution 
by the velocity of a flowing carrier gas for keeping things 
simple. Adding a fast mobile phase would diminish this 
effect. Still the simulation chromatogram represents 
qualitatively the experimental one. 

2.5. Deviation from the Linear Adsorption 
Isotherm 

If diffusion is symmetric with respect or the center of 
gravity, the obtained peaks are symmetric as well. In the 
limit of symmetric Gaussian peaks, the single moves are 
stochastically independent from each other. Hence, there 
is no interaction between the solute molecules. However, 
deviations from the linear adsorption isotherm can lead to 
asymmetric peaks. If the peak maximum is shifted to the 
left on the time axis, the asymmetry is called tailing. We 
can model tailing by a non-linear adsorption isotherm such 
as: 

 ( )2
ads m m= +c K wc c  (11) 

For 𝑤𝑤 = 0  we recover the Nernst equation 10. A 
negative deviation from the linear distribution law leads to 
an overloading of the stationary phase, i.e. not all 
molecules can be absorbed, and hence to faster moving of 
the substance in the column. To mimic this process, the 
fraction𝑐𝑐m of molecules in the bin at given 𝑥𝑥-position is 
calculated. This is the number of molecules A at given 𝑥𝑥-
position divided by the total number of molecules of type 
A. For consistency the value of 𝑐𝑐m  should be lower than 
the𝑐𝑐m -value at the maximum of this specific adsorption 
isotherm. So the higher the local concentration 𝑐𝑐m  in the 
mobile phase the faster the molecules are moved and 
hence the lower 𝑛𝑛acc  must be. Dividing equation 11 by 
𝑐𝑐m gives an effective equilibrium constant 𝐾𝐾∗ = 𝐾𝐾 (𝑤𝑤 𝑐𝑐m +
1) that can be translated to the acceptance parameter: 
𝑛𝑛acc
∗ = 𝑛𝑛acc  (𝑤𝑤 𝑐𝑐m + 1). For a negative 𝑤𝑤-value this is a 

linearly decreasing function corresponding to increasingly 
faster movement of the molecules. All we need to do is to 
replace 𝑛𝑛acc  in the conditional statement in section 2.3 by 
the expression for 𝑛𝑛acc

∗  leading to the code line: 
iacc=randint(1,max(1,int(naccAN*(w*nposA[xpos[ird]]/
molA+1)))) 

Here the commands int and max make sure that we use an 
integer number not smaller than one. It is necessary to 
chose 𝑛𝑛acc -values (naccAN) in the order of multiples of 
ten to get a reasonable effect. We can observe significant 
peak tailing for example with 𝑤𝑤 = −2,5 . It should be 
noted that tailing is obtained only after transformation to 

the time axis. Along the column, the peak is mirrored. The 
asymmetry may be numerically described by (√𝜇𝜇 − 𝜎𝜎)/𝜎𝜎 
where 𝜇𝜇 and 𝜎𝜎 are calculated from the simulation data of 
the peak. It should be stressed that the approach for 
asymmetry here is just qualitatively to show the effect 
only. 

3. Conclusion 

Modeling and simulation has become very important in 
chemical science. It should be included in secondary 
education at a reasonable level. Students should get the 
opportunity to gain knowledge about the fact that 
computational approaches and mathematical modelling 
are relevant in chemistry. To be efficient, modelling 
should be applied to topics that are already present in the 
curricula in secondary education. Chromatography is 
potentially such a topic and can in addition be employed 
as a context for teaching basic concepts such as molecular 
interactions and diffusion. It furthermore allows linking 
chemical topics to mathematics in upper secondary 
education. It is also possible to introduce the binomial 
distribution in mathematics with the simulation game for 
diffusion. From the mathematical point of view, such 
modeling in science provides a justification using a real 
scientific context. It is therefore suggested to enrich 
secondary education to a reasonable extend by modeling 
and simulation in the best case complementary to student 
experiments. 

Appendix 

Here a rigorous derivation of the standard deviation for 
the one-dimensional random walk model is provided. The 
derivation is typically beyond the secondary education, 
nevertheless it is given here for completeness.  

The variance with respect to the 𝑖𝑖-axis is given by:  

 𝜎𝜎𝑖𝑖2 = 〈𝑖𝑖2〉 − 〈𝑖𝑖〉2 

With 

 〈𝑖𝑖2〉 = 𝑡𝑡𝑝𝑝 + 𝑡𝑡(𝑡𝑡 − 1)𝑝𝑝2 
and 

 〈𝑖𝑖〉 = 𝑡𝑡 ∙ 𝑝𝑝 

we obtain in several steps 𝜎𝜎𝑖𝑖2: 

 𝜎𝜎𝑖𝑖2 = 〈𝑖𝑖2〉 − 〈𝑖𝑖〉2 = 𝑡𝑡𝑝𝑝 + 𝑡𝑡(𝑡𝑡 − 1)𝑝𝑝2 − (𝑡𝑡 ∙ 𝑝𝑝)2 
 𝜎𝜎𝑖𝑖2 = 𝑡𝑡𝑝𝑝 + 𝑡𝑡2𝑝𝑝2 − 𝑡𝑡𝑝𝑝2 − 𝑡𝑡2𝑝𝑝2 
 𝜎𝜎𝑖𝑖2 = 𝑡𝑡𝑝𝑝 − 𝑡𝑡𝑝𝑝2 
 𝜎𝜎𝑖𝑖2 = 𝑡𝑡𝑝𝑝(1 − 𝑝𝑝). 

Now we derive the variance with respect to the 𝑥𝑥-axis. 
We start with the transformation from index of the 
binomial distribution 𝑖𝑖 to the position 𝑥𝑥 = 2𝑖𝑖 − 𝑡𝑡. For the 
expectation values 𝜇𝜇𝑥𝑥 = 〈𝑥𝑥〉 and 𝜇𝜇𝑖𝑖 = 〈𝑖𝑖〉it follows due to 
this transformation: 

 〈𝑥𝑥〉 = 〈2𝑖𝑖 − 𝑡𝑡〉 = 2〈𝑖𝑖〉 − 𝑡𝑡 
Using the transformation, it follows for the second 

moment: 
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 〈𝑥𝑥2〉 = 〈(2𝑖𝑖 − 𝑡𝑡)2〉 
 〈𝑥𝑥2〉 = 〈4𝑖𝑖2 − 4𝑖𝑖𝑡𝑡 + 𝑡𝑡2〉 
 〈𝑥𝑥2〉 = 4〈𝑖𝑖2〉 − 4〈𝑖𝑖〉 ∙ 𝑡𝑡 + 𝑡𝑡2 |  ± 4〈𝑖𝑖〉2 
 〈𝑥𝑥2〉 = 4〈𝑖𝑖2〉 − 4〈𝑖𝑖〉2 + 4〈𝑖𝑖〉2 − 4〈𝑖𝑖〉 ∙ 𝑡𝑡 + 𝑡𝑡2 

 〈𝑥𝑥2〉 = 4𝜎𝜎𝑖𝑖2 + (2〈𝑖𝑖〉 − 𝑡𝑡)2 

 〈𝑥𝑥2〉 = 4𝜎𝜎𝑖𝑖2 + 〈𝑥𝑥〉2 | − 〈𝑥𝑥〉2 

 〈𝑥𝑥2〉 − 〈𝑥𝑥〉2 = 4𝜎𝜎𝑖𝑖2 

 𝜎𝜎𝑥𝑥2 = 4𝑡𝑡𝑝𝑝(1 − 𝑝𝑝). 
For 𝑝𝑝 = 1/2 we get: 

 𝜎𝜎𝑥𝑥2 = 𝑡𝑡 
 𝜎𝜎𝑥𝑥 = √𝑡𝑡. 

Here 𝑡𝑡 can be understood as the number of steps related 
toone molecule. In order to calculate 𝑡𝑡 we have to divide 
the total number of steps by the number of moving 
molecules, which yields: 

 𝜎𝜎𝑥𝑥 = �𝑛𝑛run /𝑛𝑛A . 
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